Classifying categories for partial equational logic
نویسنده
چکیده
Along the lines of classical categorical type theory for total functions, we establish correspondence results between certain classes of partial equational theories on the one hand and suitable classes of categories having certain finite limits on the other hand. E.g., we show that finitary partial theories with existentially conditioned equations are essentially the same as cartesian categories with distinguished domains, and that partial λ-calculi with internal equality are equivalent to a suitable class of partial cartesian closed categories.
منابع مشابه
Partial Horn logic and cartesian categories
A logic is developed in which function symbols are allowed to represent partial functions. It has the usual rules of logic (in the form of a sequent calculus) except that the substitution rule has to be modi ed. It is developed here in its minimal form, with equality and conjunction, as partial Horn logic . Various kinds of logical theory are equivalent: partial Horn theories, quasi-equational ...
متن کاملNominal Lambda Calculus: An Internal Language for FM-Cartesian Closed Categories
Reasoning about atoms (names) is difficult. The last decade has seen the development of numerous novel techniques. For equational reasoning, Clouston and Pitts introduced Nominal Equational Logic (NEL), which provides judgements of equality and freshness of atoms. Just as Equational Logic (EL) can be enriched with function types to yield the lambda-calculus (LC), we introduce NLC by enriching N...
متن کاملEquational Lifting Monads
We introduce the notion of an equational lifting monad: a commutative strong monad satisfying one additional equation (valid for monads arising from partial map classifiers). We prove that any equational lifting monad has a representation by a partial map classifier such that the Kleisli category of the former fully embeds in the partial category of the latter. Thus equational lifting monads pr...
متن کاملThe Completeness Theorem for Monads in Categories of Sorted Sets
Birkhoff’s completeness theorem of equational logic asserts the coincidence of the model-theoretic and proof-theoretic consequence relations. Goguen and Meseguer, giving a sound and adequate system of inference rules for finitary many-sorted equational deduction, generalized the completeness theorem of Birkhoff to the completeness of finitary many-sorted equational logic and provided simultaneo...
متن کاملA 2-category View for Double Categories with Shared Structure
2-categories and double categories are respectively the natural semantic ground for rewriting logic (rl) and tile logic (tl). Since 2-categories can be regarded as a special case of double categories, then rl can be easily embedded into tl, where also rewriting synchronization is considered. Since rl is the semantic basis of several existing languages, it is useful to map tl back into rl to hav...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. Notes Theor. Comput. Sci.
دوره 69 شماره
صفحات -
تاریخ انتشار 2002